United College Sixth Form
The best in everyone" ${ }^{\text {m }}$
Part of Swindon Academy \& United Learning

A level Chemistry

GCSE to A level Transition pack Section 1 - Introduction

United College Sixth Form

The best in everyone"
Part of Swindon Academy \& United Learning

Contents
Section 1: Introduction

Page	Section
3	1. Welcome
4	2. Why study chemistry?
4	3. Possible Degree options
5	4. Future Careers
6	5. Course information and specification
8	6. Resources and equipment
9	7. Further Reading
11	8. Transition Skills - Knowledge Audit

United College Sixth Form

Part of Swindon Academy \& United Learning

Section 1: Introduction

1. Welcome to A level Chemistry!

Fill in the table below when you know who your chemistry teachers will be. They will be your point of contact if you have any queries.

Teacher	Email address	What side of the course they are covering.

In the space below write down your reasons for studying chemistry:

United College Sixth Form The best in everyone ${ }^{\text {m" }}$
Part of Swindon Academy \& United Learning
2. Why study A level Chemistry?

Chemistry students get to investigate a huge range of ideas: the big question you'll ask yourself is 'what is the world made of?'
If you choose it as career, you have the potential to help solve all sorts of problems. You could work on a cure for cancer, or you might develop a new food: the possibilities are endless.
Even if you don't decide to work in chemistry, studying it still develops useful and transferable skills for other careers. You'll develop research, problem solving and analytical skills, alongside teamwork and communication. Universities and businesses regard these skills highly.

3. Possible Degree options:

If you decide to continue studying at university, an A level in Chemistry will be useful in a variety of different degree course: For example:

Chemistry (obviously!), Mathematics, Biology, Physics, Medicine, Biochemistry, Chemical Engineering, Pharmacology, also subjects like Accountancy, Economics, and Computer Sciences.

United College Sixth Form

 The best in everyone"Part of Swindon Academy \& United Learning

4. Future Careers:

A level Chemistry will equip you with many skills, practical, mathematical, research, problem solving alongside teamwork and communication. These are all desirable skills in many careers.

Examples of possible careers:

Analytical Chemist, Chemical Engineer, Clinical Biochemist, Pharmacologist, Doctor, Physician's Assistant, Research Scientist (physical sciences), Toxicologist, Environmental Consultant, Higher Education Lecturer, Secondary School Teacher, Patent Attorney, Science Writer, Accountant, Business Analyst, Computer Programmer.

5. Course information and specification:

You will have 2 different chemistry teachers, who will each cover different topics. One of your teachers will mainly cover the inorganic and physical chemistry topics, the other will cover the organic chemistry topics.

You will cover the following topics in the first year (AS level):

AS and A-level

Physical chemistry

- Atomic structure
- Amount of substance
- Bonding
- Energetics
- Kinetics
- Chemical equilibria, Le Chatelier's principle and K_{c}
- Oxidation, reduction and redox equations

Inorganic chemistry

- Periodicity
- Group 2, the alkaline earth metals
- Group 7 (17), the halogens
- Alkenes
- Alcohols
- Organic analysis

Organic chemistry

- Introduction to organic chemistry
- Alkanes
- Halogenoalkanes United College Sixth Form The best in everyone"
Part of Swindon Academy \& United Learning

During the second year, you will build on these topics and study the following topics:

A-level only topics

- Thermodynamics
- Rate equations
- Equilibrium constant K_{p} for homogeneous systems
- Electrode potentials and electrochemical cells
- Acids and bases

Physical chemistry Inorganic chemistry Organic chemistry

- Properties of Period 3 elements and oxides
- Transition metals
- Reactions of ions in aqueous solution
- Optical isomerism
- Aldehydes and ketones
- Carboxylic acids and derivatives
- Aromatic chemistry
- Amines
- Polymers
- Amino acids, proteins and DNA
- Organic synthesis
- NMR spectroscopy
- Chromatography

United College Sixth Form The best in everyone"
 Part of Swindon Academy \& United Learning

6. Resources and equipment:

During your course we will use the AQA A level Chemistry textbooks, you will be issued with your own copy, this will have a code for an online copy too.

- It might be useful to purchase a revision guide to help summarise key points. (The CGP revision guides are very useful, you can also get workbooks to aid your revision)
- There are many useful videos on Youtube you can use to help consolidate your learning
- For calculations, the following book is very good "Calculations in AS/A level Chemistry" by Jim Clark
- There are many calculations in A level Chemistry so a good scientific calculator is beneficial.
 United College Sixth Form The best in everyone"'
Part of Swindon Academy \& United Learning

7. Further Reading

Below is a list of further reading for A level students:

Online
Education in Chemistry Magazine: http://www.rsc.org/eic/e-magazine
The Mole Magazine: http://www.rsc.org/eic/mole
Chemistry World Online: www.rsc.org/chemistryworld/
RSC Journals: http://pubs.rsc.org/en/Journals?key=Title\&value=Current
RSC membership: www.rsc.org/Membership/Networking/chemnet/
Biochemical Society: www.biochemistry.org/
Biochemistry for schools: www.biochem4schools.org/
Cambridge Science Podcasts: www.thenakedscientists.com/HTML/podcasts/
Oxford Science Podcasts:
http://podcasts.ox.ac.uk/units/mathematical-physical-life-sciences-division
Oxford Science Blog: www.ox.ac.uk/media/science blog/
University of Bristol School of Chemistry Magazine:
http://www.bris.ac.uk/chemistry/courses/undergraduate/chemistry-explored.html
‘Science \& Ink' Cartoons: http://www.lab-initio.com/
The Periodic Table: http://www.webelements.com/
Theodore Gray's Periodic Table: http://www.periodictable.com/index.html
Molecule of the Month by the University of Bristol:
http://www.chm.bris.ac.uk/motm/motm.htm

Books

Bad Science by Dr Ben Goldacre, and http://www.badscience.net/
A Short History of Chemistry by J. R. Parrington
Acid Tongues and Tranquil Dreamers: Eight Scientific Rivalries That Changed the World, by Michael White
Crucibles: the Story of Chemistry from Ancient Alchemy to Nuclear Fission by Bernard Jaffe
Fast Food Nation by Eric Schlosser
Mauve: How One Man Invented a Color that Changed the World
by Simon Garfield
Mendeleev's Dream by Paul Strathern
Molecular Origami by Bob Hanson
Molecules at an Exhibition: Portraits of Intriguing Materials in Everyday Life by John Elmsley

The Big Bang, a History of Explosives by G.I. Brown

United College Sixth Form

The best in everyone ${ }^{\text {m" }}$
(R) Part of Swindon Academy \& United Learning

Uncle Tungsten: Memories of a Chemical Boyhood by Oliver Sacks

Titration Practice Quizzes: http://www.rsc.org/learn-chemistry/resource/res00002012/titrations-quizzes-new-users-guide
How to read a scientific journal article: http://www.rsc.org/learn-
chemistry/resource/res00001653/how-to-read-a-journal-article
Build an atom: http://www.rsc.org/learn-chemistry/resource/res00002413/iyptactivities\#!cmpid=CMP00003366
Chemistry \& Football: http://www.rsc.org/learn-chemistry/resource/res00000862/chemistry-and-sport-football
Chemistry in your bathroom: http://www.rsc.org/learn-chemistry/resource/res00001050/chemistry-in-your-bathroom-resource
Women in Chemistry: http://www.rsc.org/learn-chemistry/resource/res00001023/faces-of-chemistry-women-in-chemistry
Making Aspirin Screen Experiment: http://www.rsc.org/learn-chemistry/resources/screen-experiment/aspirin/experiment/1
Chemistry of Fireworks: https://www.youtube.com/embed/HOBhUQqT4CE
Prof. Peter Wothers (University of Cambridge) Demonstration Videos:
https://www.youtube.com/channel/UCgpV4wTwVNlueTwA79YjM8A
Crash Course Chemistry:
https://www.youtube.com/watch?v=uVFCOfSuPTo\&list=PL8dPuuaLjXtPHzzYuWy6f
YEaX9mQQ8oGr
Fun chemistry experiments to try at home:
Cracking Chemistry: http://www.rsc.org/learn-
chemistry/resource/res00001318/cracking-chemistry
Outreach Science Festivals: http://www.rsc.org/learn-
chemistry/resource/res00000918/outreach-science-festivals
5 minute crafts: https://www.youtube.com/watch?v=TKgzQmV1KEY
HooplaKidzLab: https://www.youtube.com/watch?v=YmafohV2RX8
Science Museum Learning Site: https://www.sciencemuseum.org.uk/learning
UCAS Chemistry: https://www.ucas.com/job-subjects/chemistry
Catalyst Musuem: http://www.catalyst.org.uk/
Quantitative Chemistry Problem Solving: http://www.rsc.org/learn-
chemistry/resources/problem-solving-tutor/
LearnChemistry Experimentation Hub: http://www.rsc.org/learn-
chemistry/collections/experimentation

United College Sixth Form

8. Transition skills: Knowledge Audit

Complete the following Knowledge audit
Rank each of the skills red, orange or green
(Red = not confident, amber = some confidence, green confident)

For each section ranked red and amber, complete the relevant section in the transition work booklets.

Section 2 - General Scientific Skills

Topic	R	A	G
1. Prefixes			
2. Significant figures			
3. Converting length, area, volume			
4. Rearranging equations			
5. Variables			
6. Drawing lines of best fit			
7. Constructing graphs			
8. Calculating gradients - straight lines			
9. Calculating gradients - curves			
10. Accuracy Vs Precision			
11. Improving Experiments -			
Accuracy, Precision and Reliability			
12. Ratios			

United College Sixth Form

The best in everyone"
Part of Swindon Academy \& United Learning

Section 3: Chemistry

Topic:	R	A	G
1. Periodic Table			
2. Chemical symbols and common ions			
3. Word equations			
4. Balancing equations			
5. Moles			
6. Empirical Formula			
7. Organic Chemistry			

United College Sixth Form
The best in everyone"
Part of Swindon Academy \& United Learning

A level Chemistry

GCSE to A level Transition pack
Section 2 - Scientific skills

United College Sixth Form

The best in everyone"'
Part of Swindon Academy \& United Learning
Contents
Section 1: Introduction

Page	Section
3	1. Prefixes
5	2. Significant Figures
8	3. Converting Length, area and volume 11
12	4. Rearranging Equations
13	5. Variables
16	7. Constructing Graphs
18	8. Calculating Gradients - straight lines
20	9. Calculating Gradients - Curved lines
22	10. Accuracy vs Precision
25	11. Improving experiments - accuracy, precision and reliability
28	12. Ratios

United College Sixth Form

The best in everyone"'
Part of Swindon Academy \& United Learning

1. Prefixes

In Chemistry we have to deal with quantities from the very large to the very small. A prefix is something that goes in front of a unit and acts as a multiplier. This sheet will give you practice at converting figures between prefixes.

Symbo I	Nam e		What it means		How to convert	
P	peta	10^{1} 5	1000000000000000		\downarrow x100 0	
T	tera	10^{1} 2	1000000000000	$\uparrow \div$ 100 0	\downarrow x100 0	
G	giga	10^{9}	1000000000	$\uparrow \div$ 100 0	\downarrow x100 0	
M	mega	10^{6}	1000000	$\uparrow \div$ 100 0	\downarrow x100 0	

United College Sixth Form
The best in everyone"
Part of Swindon Academy \& United Learning

k	kilo	10^{3}	1000	$\begin{aligned} & \uparrow \div \\ & 100 \\ & 0 \end{aligned}$	$\begin{aligned} & \downarrow \\ & \text { x100 } \\ & 0 \end{aligned}$
			1	$\begin{aligned} & \uparrow \div \\ & 100 \\ & 0 \end{aligned}$	$\begin{aligned} & \downarrow \\ & \text { x100 } \\ & 0 \end{aligned}$
m	milli	10^{-3}	0.001	$\begin{aligned} & \uparrow \div \\ & 100 \\ & 0 \end{aligned}$	$\begin{aligned} & \downarrow \\ & \text { x100 } \\ & 0 \end{aligned}$
μ	micro	10^{-6}	0.000001	$\begin{aligned} & \uparrow \div \\ & 100 \\ & 0 \end{aligned}$	$\begin{aligned} & \downarrow \\ & \text { x100 } \\ & 0 \end{aligned}$
n	nano	10^{-9}	0.000000001	$\begin{aligned} & \uparrow \div \\ & 100 \\ & 0 \end{aligned}$	$\begin{aligned} & \downarrow \\ & \text { x100 } \\ & 0 \end{aligned}$
p	pico	$\begin{aligned} & 10^{-} \\ & 12 \end{aligned}$	0.000000000001	$\begin{aligned} & \uparrow \div \\ & 100 \\ & 0 \end{aligned}$	$\begin{aligned} & \downarrow \\ & \text { x100 } \\ & 0 \end{aligned}$
f	femt o	$\begin{aligned} & 10^{-} \\ & 15 \end{aligned}$	$1 \quad 0.00000000000000$	$\begin{aligned} & \uparrow \div \\ & 100 \\ & 0 \end{aligned}$	

Have a go:

United College Sixth Form

The best in everyone"
Part of Swindon Academy \& United Learning

Convert the figures into the units required.
Convert these figures to suitable prefixed units.

6 km	$=$$6 \times 10^{3}$ m
54 Mm	$=\mathrm{m}$
0.086 $\mu \mathrm{~g}$	$=\mathrm{g}$
753 GPa	Pa
23.87 $\mathrm{~mm} / \mathrm{s}$$=\mathrm{m} / \mathrm{s}$	

640 Gg	$=$$640 \times 10^{9}$ g
	$=$$0.5 \times 10^{-6}$ A
	$=$93.09 x $10^{9} \mathrm{~m}$
kN	$=$$32 \times 10^{5}$ N
nm	$=$$0.024 \times 10^{-} \mathrm{m}$

United College Sixth Form

The best in everyone ${ }^{\text {m }}$
Part of Swindon Academy \& United Learning
Convert the figures into the prefixes required.

\mathbf{s}	$\mathbf{m s}$	$\boldsymbol{\mu s}$	ns	ps
134.6	134.6 x 10^{3}	134.6 x 10^{6}	134.6 x 10^{9}	134.6 x 10^{12}
96.21				
0.773 x 10^{3}				

$\mathbf{m m}$	\mathbf{m}	$\mathbf{k m}$	$\boldsymbol{\mu m}$	Gm
12873				
0.295				
0.005723 x $10-6$				

$\mathbf{k g}$	$\mathbf{M g}$	$\mathbf{m g}$	\mathbf{g}	$\mathbf{G g}$
94.76				
0.000765 x 10^{3}				

United College Sixth Form
The best in everyone"'
Part of Swindon Academy \& United Learning

$823.46 \times 10^{-}$			
6			

United College Sixth Form The best in everyone ${ }^{\text {TM }}$
 Part of Swindon Academy \& United Learning

2. Significant Figures

1. All non-zero numbers ARE significant. The number 33.2 has THREE significant figures because all of the digits present are non-zero.
2. Zeros between two non-zero digits ARE significant. 2051 has FOUR significant figures. The zero is between a 2 and a 5 .
3. Leading zeros are NOT significant. They're nothing more than "place holders." The number 0.54 has only TWO significant figures. 0.0032 also has TWO significant figures. All of the zeros are leading.
4. Trailing zeros when a decimal is shown ARE significant. There are FOUR significant figures in 92.00 and there are FOUR significant figures in 230.0.
5. Trailing zeros in a whole number with no decimal shown are NOT significant. Writing just " 540 " indicates that the zero is NOT significant, and there are only TWO significant figures in this value.
6. For a number in scientific notation: $\mathbf{N} \times 10^{\mathbf{x}}$, all digits comprising N ARE significant by the first 5 rules; "10" and " x " are NOT significant. 5.02×10^{4} has THREE significant figures.

Have a go:

For each value state how many significant figures it is stated to.

United College Sixth Form
The best in everyone"
Part of Swindon Academy \& United Learning

Value	Sig Figs						
2		1066		1800.45		0.07	
2.0		75.42		2.483 x 10^{4}		69324.8	
500		310		5906.429 1		9.81 x 10^{4}	
0.136		3.10 x 10^{4}		200000		40000.0 0	
0.030		3.1 x 10^{2}		12.711		0.0004 x 10^{4}	
54.1							

When adding or subtracting numbers

Round the final answer to the least number of decimal places in the initial values.

Eg. $10.2+0.88$ - 5.776 (= 5.304) = $\mathbf{5 . 3}$ (to 1d.p. , since 10.2 only contains 1 decimal place)

Have a go at the activity on the next page:

United College Sixth Form

 The best in everyone"Part of Swindon Academy \& United Learning

Add the values below then write the answer to the appropriate number of significant figures

Value 1	Value 2	Value 3	Total Value	Total to correct sig figs
51.4	1.67	3.23		
7146	-32.54	12.8		
20.8	18.72	0.851		
1.4693	10.18	-1.062		
9.07	0.56	3.14		
739762	26017	2.058		
8.15	0.002	106		
152	0.8	0.55		

When multiplying or dividing numbers

Round the final answer to the least number of significant figures in the initial values.
E.g. $4.02 \times 3.1,0.114=(109.315 \ldots)=\underline{\mathbf{1 1 0}}$ (to 2 s.f. as 3.1 only has 2 significant figures.

United College Sixth Form

 The best in everyone"Part of Swindon Academy \& United Learning

Have a go:

Multiply the values below then write the answer to the appropriate number of significant figures

Value 1	Value 2	Total Value	Total to correct sig figs
0.91	1.23		
8.764	7.63		
2.6	31.7		
937	40.01		
0.722	634.23		

Divide value 1 by value 2 then write the answer to the appropriate number of significant figures

Value 1	Value 2	Total Value	Total to correct sig figs
5.3	748		
3781	6.434		
91×10^{2}	180		

United College Sixth Form

 The best in everyone"'Part of Swindon Academy \& United Learning

5.56	22×10^{-3}		
3.142	8.314		

When calculating a mean

1) Remove any obvious anomalies (circle these in the table)
2) Calculate the mean with the remaining values, and record this to the least number of decimal places in the included values
E.g. Average 8.0, 10.00 and 145.60:
3) Remove 145.60
4) The average of 8.0 and 10.00 is $\underline{\mathbf{9 . 0}}$ (to 1 d.p.)

Have a go:

Calculate the mean of the values below then write the answer to the appropriate number of significant figures

United College Sixth Form

The best in everyone"'
Part of Swindon Academy \& United Learning

Value 1	Value 2	Value 3	Mean Value	Mean to correc sig figs
1	1	2		
435	299	357		
5.00	6.0	29.50		
3.038	4.925	3.6		
720.00	498.0	268		
0.00040	0.00039	0.000380		
34	30.314	29.7		
23.000	320.00	320.0		
1.4	0.039	260.1		

United College Sixth Form

Part of Swindon Academy \& United Learning

3. Converting Length, area and volume

Whenever substituting quantities into an equation, you must always do this in SI units - such as time in seconds, mass in kilograms, distance in metres..

If the question doesn't give you the quantity in the correct units, you should always convert the units first, rather than at the end. However sometimes the question may give you an area in mm^{2} or a volume in cm^{3}, and you will need to convert these into m^{2} and m^{3} respectively before using an equation.

To do this, you firstly need to know your length conversions:
$1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm} \quad(1 \mathrm{~cm}=10 \mathrm{~mm})$
Therefore:

m à cm	$x 100$	cm à m	, 100
m à mm	x 1000	m à mm	, 1000

Always think -
"Should my number be getting larger or smaller?" This will make it easier to decide whether to multiply or divide.

United College Sixth Form
The best in everyone"'
Part of Swindon Academy \& United Learning

Converting Areas

A $1 \mathrm{~m} \times 1 \mathrm{~m}$ square is equivalent to a $100 \mathrm{~cm} \times 100 \mathrm{~cm}$ square.

Therefore, $\quad 1 \mathrm{~m}^{2}=10000 \mathrm{~cm}^{2}$
Similarly, this is equivalent to a $1000 \mathrm{~mm} \times 1000 \mathrm{~mm}$ square;
So, $1 \mathrm{~m}^{2}=1000000 \mathrm{~mm}^{2}$

m^{2} à cm^{2}	x 10 000	$\mathrm{~cm}^{2}$ à m^{2}	, 10000
$\mathrm{~m}^{2}$ à	$\times 1000$, 1000
$\mathrm{~mm}^{2}$	000	$\mathrm{~m}^{2}$ à mm^{2}	000

Converting Volumes

A $1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}$ cube is equivalent to a $100 \mathrm{~cm} \times 100 \mathrm{~cm}$ 100 cm cube.

Therefore, $\quad 1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3}$
Similarly, this is equivalent to a $1000 \mathrm{~mm} \times 1000 \mathrm{~mm} \times$ 1000mm cube;

So

$$
1 \mathrm{~m}^{3}=10^{9} \mathrm{~mm}^{3}
$$

United College Sixth Form

The best in everyone"
Part of Swindon Academy \& United Learning

Have a go at the

$\begin{aligned} & \mathrm{m}^{3} \text { à } \\ & \mathrm{cm}^{3} \end{aligned}$	$\begin{aligned} & \times 1000 \\ & 000 \end{aligned}$	cm^{3} à m^{3}	$\begin{array}{\|l\|l} \hline \text {. } 1000 \\ 000 \end{array}$
$\begin{aligned} & \mathrm{m}^{3} \text { à } \\ & \mathrm{mm}^{3} \end{aligned}$	$\times 10^{9}$	m^{3} à mm ${ }^{3}$, 10^{9}

activities below

$6 \mathrm{~m}^{2}$	$=\mathrm{cm}^{2}$
$0.002 \mathrm{~m}^{2}=\mathrm{mm}^{2}$	
$24000 \mathrm{~cm}^{2}$	$=\mathrm{m}^{2}$
46000000 $\mathrm{~mm}^{3}$	$=\mathrm{m}^{3}$
$0.56 \mathrm{~m}^{3}$	$=\mathrm{cm}^{3}$

| $750 \mathrm{~mm}^{2}$ | $=\mathrm{m}^{2}$ |
| :--- | :--- | :--- |
| $5 \times 10^{-4} \mathrm{~cm}^{3}$ | $=\mathrm{m}^{3}$ |
| $8.3 \times 10^{-6} \mathrm{~m}^{3}$ | $=\mathrm{mm}^{3}$ |
| $3.5 \times 10^{2} \mathrm{~m}^{2}$ | $=\mathrm{cm}^{2}$ |
| $30 \times 10^{5} \mathrm{~mm}^{2}+$
 $4500 \mathrm{~cm}^{2}$ | $=\mathrm{m}^{2}$ |

Now use the technique shown on the previous page to work out the following conversions:

$31 \times 10^{8} \mathrm{~m}^{2}$	$=\mathrm{km}^{2}$
$59 \mathrm{~cm}^{2}$	$=\mathrm{mm}^{2}$
$24 \mathrm{dm}^{3}$	$=\mathrm{cm}^{3}$
$4500 \mathrm{~mm}^{2}$	$=\mathrm{dm}^{2}$
$5 \times 10^{-4} \mathrm{~km}^{3}$	$=\mathrm{m}^{3}$

(Hint: There are 10 cm in 1 dm)

United College Sixth Form

 The best in everyone"'Part of Swindon Academy \& United Learning

A Volumetric flask contains $1 \mathrm{dm}^{3}$ of acid. What is its volume in cm^{3} ?

Volume $=$ \qquad cm^{3}

For the following, think about whether you should be writing a smaller or a larger number down to help decide whether you multiply or divide.

Eg. To convert $5 \mathrm{~m} / \mathrm{s}$ into $\mathrm{m} /$ minute - you will travel more metres in 1 minute than in 1 second, therefore you should multiply by 60 to get $300 \mathrm{~m} /$ minute.

$5 \mathrm{~N} / \mathrm{cm}^{2}$	$=\mathrm{N} / \mathrm{m}^{2}$
$750 \mathrm{~g} / \mathrm{m}^{3}$	$=\mathrm{g} / \mathrm{cm}^{3}$
$3 \mathrm{~m} / \mathrm{s}$	$=\mathrm{km} / \mathrm{h}$
$65 \mathrm{kN} / \mathrm{cm}^{2}$	$=\mathrm{N} / \mathrm{mm}^{2}$
$54 \mathrm{~g} / \mathrm{cm}^{3}$	$=\mathrm{kg} / \mathrm{m}^{3}$

United College Sixth Form The best in everyone"'
Part of Swindon Academy \& United Learning

4. Rearranging equations

There are not many equations used in A level Chemistry as there are in Physics. But rearranging equations is still a useful skill, and you will still need to be able to do it for the equations you do use.

Have a go:
Rearrange each equation into the subject shown in the middle column.

Equation		Rearrange Equation
$p V=n R T$	R	
$e=\frac{1}{2} m v^{2}$	v	

United College Sixth Form
The best in everyone"
Part of Swindon Academy \& United Learning

United College Sixth Form The best in everyone ${ }^{\text {TM }}$
 Part of Swindon Academy \& United Learning

5. Variables

A variable is a quantity that takes place in an experiment. There are three types of variables:

Independent variable - this is the quantity that you change
Dependent variable - this is the quantity that you measure
Control variable - this is a quantity that you keep the same so that it does not affect the results

You can only have one independent variable and one dependent variable, but the more control variables you have the more accurate your results will be.

Further to these, you can also split the independent variable category - this can be continuous or discrete.

A continuous variable can take any numerical value, including decimals. You will construct line graphs for continuous variables.

A discrete variable can only take specific values or labels (eg. integers or categories). You will construct bar charts for discrete variables.

Have a go:

For the case study below, state the independent variable, dependent variable, and any control variables described. Add further control variables, and state what type the

United College Sixth Form

 The best in everyone"'Part of Swindon Academy \& United Learning
independent variable is and what type of graph you will present the results with (if required).

Case study 1 - Measuring the effect of concentration on rate of reaction

The aim of this experiment is to find out how if changing the concentration of acid used in a reaction changes the rate of the reaction. 50 cm 3 of 0.1 M HCl is added to 1 g of marble chips. The rate is measured by using a gas syringe and monitoring the volume of gas every minute. This is repeated with $0.5 \mathrm{M} \mathrm{HCl}, 1 \mathrm{M} \mathrm{HCL}$ and 2 M HCl

Independent variable: \qquad

Dependent variable: \qquad

Control variables: \qquad
\qquad
\qquad
\qquad
Type of independent variable: \qquad

Graph: \qquad

United College Sixth Form

 The best in everyone"Part of Swindon Academy \& United Learning

6. Drawing Lines of Best Fit

When drawing lines of best fit, draw a smooth straight or curved line that passes through the majority of the points. If you can, try to have an even number of points above and below the line if it can't go through all points.

When describing the trend, use the phrase....
"As ' X ' increases, ' Y ' increases/decreases in a linear/nonlinear fashion."

Substitute the quantities into X and Y , and choose either of the two options to describe the graph.

United College Sixth Form

The best in everyone"
Part of Swindon Academy \& United Learning

Have a go at the activities on the next few pages:

Draw a line of best fit for each of the graphs and describe the trend shown by each (call the quantities X and Y).
1.
2.

United College Sixth Form
The best in everyone"
Part of Swindon Academy \& United Learning
3.

4.

5.

United College Sixth Form
The best in everyone"
Part of Swindon Academy \& United Learning
6.

United College Sixth Form

Part of Swindon Academy \& United Learning

7. Constructing Graphs

When drawing graphs, you will be marked on the following criteria:

1) Axes - Your independent variable is on the x axis, and your dependent variable is on the y axis. Both axes need to be labelled.
2) Units - Add units to your axes when labelling.
3) Scale - Make your scale as large as possible so that your data fills most of the page. You don't have to start your axes at the origin. Make sure you have a regular scale that goes up in nice numbers - 1, 2, 5, 10 etc...
4) Points - mark each point with a cross using a sharp pencil. Don't use circles or dots as points.
5) Line of best fit - draw a smooth line of best fit - straight or curved depending on what pattern your data follows.

An easy way to remember these points is..... S cale
Line
A xes (U nits)
Points

Have a go:

Plot graphs for the following sets of data, including a line of best fit for each.

United College Sixth Form

The best in everyone"
Part of Swindon Academy \& United Learning
(This is a physics example, but still useful to practice!!)

Surface area of pendulum $\left(\mathrm{cm}^{2}\right)$	Time taken for pendulum to stop (s)
5.0	170
6.2	127
7.4	99
8.0	86
8.8	70
9.9	56

Current (A)	Voltage (V)
0.07	1.46
0.14	1.44
0.21	1.42
0.30	1.40
0.41	1.38
0.57	1.33
0.81	1.29
1.10	1.21

United College Sixth Form

8. Calculating Gradients - straight lines

Gradients are a useful tool that show how fast or slow quantities change - eg speed tells us how fast distance is changing, or how quickly energy is being lost over time.

To calculate the gradient, pick any two points on the line as far away as possible and draw a large triangle between them.

The gradient is given by:

$$
\text { gradient }=\frac{\text { diffference in } y \text { values }}{\text { difference in } x \text { values }}
$$

But make sure the you subtract the values in the same order! Remember - if the line slopes up, the gradient should be positive; if the line slopes down, then the gradient should be negative.

$$
\begin{aligned}
\text { Gradient }= & \frac{\text { difference in } \mathrm{y}}{\text { difference in } \mathrm{x}} \\
& =\frac{2}{4}
\end{aligned}
$$

5
 United College Sixth Form
 The best in everyone"'
 Part of Swindon Academy \& United Learning
 $=0.5$

Have a go:

Calculate the gradients of the graphs below.

United College Sixth Form

The best in everyone"
Part of Swindon Academy \& United Learning

United College Sixth Form

The best in everyone"'
Part of Swindon Academy \& United Learning

United College Sixth Form
The best in everyone"
Part of Swindon Academy \& United Learning

9. Calculating Gradients - Curved lines

Most graphs in real life are not straight lines, but curves; however it is still useful to know how the quantity changes over time, hence we still need to calculate gradients. When you study the rates topic, you will need to do this.

If we want to know the gradient at a particular point, firstly we need to draw a tangent to the curve at that point.

United College Sixth Form

The best in everyone ${ }^{\text {mim }}$
(B) Part of Swindon Academy \& United Learning

A tangent is a straight line that follows the gradient at the required point. Once we have drawn the straight line tangent, its gradient can be calculated in exactly the same way as the previous page showed.

Tip - make sure your tangents and gradient triangles are as big as possible to be as accurate as you can!

Examples of drawing tangents and calculating the gradient of a tangent:

United College Sixth Form

The best in everyone"
Part of Swindon Academy \& United Learning

Have a go at the activities on the next page:

Draw a tangent to the line and calculate its gradient at the following x-axis values:

2.0 and $3.9 \quad 1.5$ and 3.0

United College Sixth Form

The best in everyone"
Part of Swindon Academy \& United Learning

2.2 and $4.0 \quad 1.6$ and 3.4

10. Accuracy vs Precision

A more accurate result is one that is closer to the true value, if the true value lies within the uncertainty of the reading.

United College Sixth Form

 The best in everyone"Part of Swindon Academy \& United Learning

A more precise result is measured to a higher number of decimal places.

Eg. The true temperature of the room is 22.4°. One thermometer gives a reading of 23°, and another gives a reading of 22.7°. Which is the most accurate and precise?

Even though the 22.7° thermometer is closer to the true value, when taking the uncertainty of the two readings into account, this reading gives a temperature between 22.6° and 22.8° (the true value is outside of this range), whereas the other thermometer gives a range of $22^{\circ}-24^{\circ}$ (which the true value lies between). Therefore even though it is not as precise, the 23° reading is more accurate.

Have a go at the following activities:

1. India is weighing things. She uses one forcemeter that measures to the nearest 0.1 N , and another that measures to 1 N . Actual weight: 4.3 N.

United College Sixth Form

Part of Swindon Academy \& United Learning

Explanation:

\qquad
\qquad
2. Bella wins a race in a time of 13.7 s . Two spectators timed her using an electronic stopwatch which measures to $1 / 100^{\text {th }}$ of a second, and an analogue stopwatch which measures to 1 S.

United College Sixth Form

Part of Swindon Academy \& United Learning
Recorded Time:
Recorded Time: 14 s
13.90 s

Explanation:
\qquad
\qquad
3. Ellie is determined the answer the question "how long is a piece of string?" She measures it using two rulers. Actual length: 5.0 cm

United College Sixth Form

Part of Swindon Academy \& United Learning

Explanation:
\qquad
\qquad
4. Isabelle is finding the masses of various insects. She uses one balance that measures to the nearest 0.1 g , and another that measures to 0.01 g . Actual mass: 0.25 g .

United College Sixth Form

The best in everyone ${ }^{\text {m }}$
Part of Swindon Academy \& United Learning

Explanation:

United College Sixth Form

 The best in everyone ${ }^{\text {mim }}$Part of Swindon Academy \& United Learning

11. Improving Experiments - Accuracy, Precision and

 ReliabilityWhen improving accuracy, you must describe how to make sure your method obtains the best results possible. You should also try to use as large quantities as possible as this reduces the percentage error in your results. Also make your range as large as possible, with small intervals between each reading.

Precision refers to the smallest scale division provided by your measuring instrument, or what is is the smallest nonzero reading you can obtain from that instrument. Whenever referring to increasing precision in your answers, you must also state the instrument you are referring to.

Reliability refers to how 'trustworthy' your results are. You can improve reliability by repeating and averaging your experiment, as well as removing anomalies.

Have a go at the activities on next pages:

United College Sixth Form

 The best in everyone"Part of Swindon Academy \& United Learning

Complete the table below to state how to use the measuring instruments as accurately as possible, as well as stating the precision (smallest scale division) of each instrument.

Measuring Instrument	Accuracy What procedures should you use to ensure you gain accurate results?	Precision State the precision of the instruments shown in the diagram.
Measuring Cylinder		

United College Sixth Form

The best in everyone"
Part of Swindon Academy \& United Learning

Mass Balance		

United College Sixth Form

The best in everyone"
Part of Swindon Academy \& United Learning
$\left.\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { ensure you gain } \\ \text { accurate results? }\end{array} & \begin{array}{l}\text { the } \\ \text { instruments } \\ \text { shown in the }\end{array} \\ \text { diagram. }\end{array}\right]$

United College Sixth Form The best in everyone"
 Part of Swindon Academy \& United Learning

12. Ratios

Understanding ratio allows us to easily compare separate quantities. We can then examine patterns, comment on the relationship, or use ratios to help us solve equations. We use this skill to calculate empirical formulas in chemistry.

For example:

- Use 3 parts red paint to 1 part white paint.
- Use 1 teabag to 250 ml of water.
- Use 1 shovel of cement to 2 shovels of sand.

The order of the ratio is very important.
The number of teabags used per ml of water would be 1:250.
Saying that the answer was 250:1 would mean something very different.

We can use ratios to scale measurements, drawings, and calculations up and down.

Have a go:

Simplify the following ratios (Example 6:4 $=3: 2$):

1. 120:50
2. $64: 24$

United College Sixth Form The best in everyone"
Part of Swindon Academy \& United Learning
3. 13:52
4. 100:10 000
5. 24:72
6. 18:90
7. 56:88
8. 36:144
9. A toy is made from red bricks and yellow bricks.

Number of red bricks: Number of yellow bricks =5:2.
There are 210 more red bricks than yellow bricks.

How many red bricks are in the toy?

United College Sixth Form The best in everyone"
Part of Swindon Academy \& United Learning

10. There are 100 balls in a bag. The balls are red, blue, green or white. The ratio of blue to red is $5: 1$. There are twice as many blue as green. $\frac{1}{4}$ of the balls are green.

How many white balls are in the bag?
11. One day, 460 people visit a zoo. 280 are adults. The ratio of women to men is $4: 3$.

180 are children. $\frac{3}{5}$ of them are boys. Jane says that altogether there were more females visiting the zoo.

Show that she is correct.

United College Sixth Form
The best in everyone"'
Part of Swindon Academy \& United Learning

A level Chemistry

GCSE to A level Transition pack Section 3 - Chemistry Skills

United College Sixth Form

The best in everyone"
Part of Swindon Academy \& United Learning
Contents
Section 3: Chemistry Skills

Page	Section
3	1. Periodic Table
5	2. Chemical symbols and common ions
8	3. Word Equations
10	4. Balancing equations
12	5. Moles
14	6. Empirical Formula
16	7. Organic Chemistry

United College Sixth Form
The best in everyone"
Part of Swindon Academy \& United Learning

Chemistry Skills: 1. Periodic table

Have a go:

On the periodic table on the following page:

- Draw a line showing the metals and non-metals.
- Colour the transition metals blue.
- Colour the halogens yellow.
- Colour the alkali metals red.
- Colour the noble gases green.
- Draw a blue arrow showing the direction of periods.
- Draw a red arrow showing the direction of groups.
- Draw a blue ring around the symbols for all gases.
- Draw a red ring around the symbols for all liquids.

United College Sixth Form

The best in everyone ${ }^{\text {Tm }}$
Part of Swindon Academy \& United Learning

United College Sixth Form
The best in everyone"'
Part of Swindon Academy \& United Learning

Chemistry Skills:
 2. Chemical formulae

In Chemistry it is useful to just know some elements, compounds and ions. Below are lists of useful chemical symbols and formulae:

Elements				Compounds	
Al	aluminium	Mg	magnesium	NH_{3}	ammonia
Ar	argon	Hg	mercury	CaCO_{3}	calcium carbonate
Br_{2}	bromine	Mg	magnesium	CO	carbon monoxide
Ca	calcium	Ne	neon	CO_{2}	carbon dioxide
C	carbon	Ni	nickel	CuSO_{4}	copper sulfate
Cl_{2}	chlorine	N_{2}	nitrogen	HCl	hydrochloric acid
Cr	chromium	O_{2}	oxygen	CH_{4}	methane
Co	cobalt	P_{4}	phosphorus	HNO_{3}	nitric acid
Cu	copper	Pt	platinum	NO	nitrogen monoxide
F_{2}	fluorine	K	potassium	NO_{2}	nitrogen dioxide
Au	gold	Si	silicon	NaCl	sodium chloride
He	helium	Ag	silver	NaOH	sodium hydroxide
H_{2}	hydrogen	Na	sodium	SO_{2}	sulfur dioxide
I_{2}	iodine	S_{8}	sulfur	$\mathrm{H}_{2} \mathrm{SO}_{4}$	sulfuric acid
Fe	iron	Sn	tin	$\mathrm{H}_{2} \mathrm{O}$	water
Pb	lead	Ti	titanium		
Li	lithium	Zn	zinc		

Common ions:

+1	H^{+} NH_{4}^{+} Group 1 ammonium ions (e.g. Na^{+}sodium ions)
+2	Group 2 ions (e.g. Ca^{2+} calcium ions)
+3	Group 3 ions (e.g. Al^{3+} aluminium ions)

\(\left.$$
\begin{array}{|l|l|}\hline-1 & \begin{array}{l}\mathrm{NO}_{3}^{-} \\
\mathrm{OH}^{-} \\
\text {Group } 7 \text { nitrate ions (e.g. } \mathrm{Br}^{-} \text {bromide ions) }\end{array} \\
\hline-2 & \begin{array}{l}\mathrm{CO}_{3}{ }^{2-} \\
\mathrm{SO}_{4}^{2-}\end{array}
$$ carbonate ions

sulfate ions\end{array}\right]\)| -3 | PO_{4}^{3-} phosphate ions |
| :--- | :--- |

United College Sixth Form

Part of Swindon Academy \& United Learning

Have a go at completing the tables:

	name	formula
1	sodium ions	
2	sodium	
3	sulfide ions	
4	sulfate ions	
5	sulfur	
6	aluminium oxide	
7	barium hydroxide	
8	silver(I) nitrate	
9	ammonium carbonate	
10	sodium phosphate	

United College Sixth Form
The best in everyone"
Part of Swindon Academy \& United Learning

	name	formula
1	oxygen	
2	oxide ions	
3	copper(II) ions	
4	copper	
5	ammonia	
6	ammonium chloride	
7	magnesium nitrate	
8	barium sulfate	
9	sodium oxide	
10	aluminium bromide	

Chemical skills: 3. Word Equations

You should be able to identify reactions from their symbol equations and write word equations

On the next page there is an activity to practice writing word equations.

Have a go:

United College Sixth Form
 The best in everyone ${ }^{\text {TM }}$
 Part of Swindon Academy \& United Learning

Convert the following equations into word equations. Here is an example

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \text { sodium carbonate }+ \text { hydrochloric acid } \rightarrow \text { sodium chloride }+ \text { water }+ \text { carbon dioxide }
\end{aligned}
$$

1) $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$
2) $2 \mathrm{~K}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{KBr}$
3) $\mathrm{Cu}+\mathrm{S} \rightarrow \mathrm{CuS}$
4) $\mathrm{CuCO}_{3} \rightarrow \mathrm{CuO}+\mathrm{CO}_{2}$
\qquad
5) $\mathrm{Pbl}_{2} \rightarrow \mathrm{~Pb}+\mathrm{I}_{2}$
\qquad
6) $\mathrm{CuBr}_{2} \rightarrow \mathrm{Cu}+\mathrm{Br}_{2}$
\qquad
7) $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$
\qquad
8) $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
\qquad
9) $\mathrm{KBr}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgBr}+\mathrm{KNO}_{3}$
\qquad
10) $\mathrm{MgSO}_{4}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{BaSO}_{4}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$

United College Sixth Form The best in everyone"'
Part of Swindon Academy \& United Learning

Chemistry Skill: 4. Balancing equations

- An equation is balanced when there are the same number of atoms of each type on both sides of the equation.
- An equation can only be balanced by putting numbers in front of formulas - you cannot change the formula itself.
- Equations can be written with state symbols: $(\mathrm{s})=$ solid, $(\mathrm{l})=$ liquid, $(\mathrm{g})=\mathrm{gas},(\mathrm{aq})=$ aqueous (dissolved in water).

How to balance an equation:

a) Calculate how many atoms of each type are on each side of the equation.
b) If the numbers are the same then the equation is balanced.
c) If the numbers are not the same, then numbers are put in front of the formulas (this adds more of that substance). You cannot change the formulas (this would make a different substance). Hint - start with unbalanced elements that only appear in one substance on each side of the equation.
d) Keep doing this until the equation is balanced.
e.g. $\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

United College Sixth Form
 The best in everyone"
 Part of Swindon Academy \& United Learning

Questions

Put your final answers here although you may wish to do your working on a separate sheet of paper or on the back.

1) $\mathrm{Ca}+\mathrm{O}_{2} \rightarrow \mathrm{CaO}$
2) $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}$
3) $\mathrm{Al}+\mathrm{O}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}$
4) $\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}$
5) $\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{O}+\mathrm{CO}_{2}$
6) $\mathrm{K}+\mathrm{O}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{O}$
7) $\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
8) $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{HCl} \rightarrow \mathrm{FeCl}_{3}+\mathrm{H}_{2} \mathrm{O}$
9) $\mathrm{F}_{2}+\mathrm{KBr} \rightarrow \mathrm{KF}+\mathrm{Br}_{2}$
10) $\mathrm{C}_{5} \mathrm{H}_{12}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
11) $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
12) $\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

United College Sixth Form
The best in everyone"'
Part of Swindon Academy \& United Learning

Chemistry Skills: 5. Moles

A mole is the amount of a substance that contains 6.02×10^{23} particles.
The mass of 1 mole of any substance is the relative formula mass $\left(M_{r}\right)$ in grams.

Examples:

One mole of carbon contains 6.02×10^{23} particles and has a mass of 12.0 g

Two moles of copper contains 12.04×10^{23} particles, and has a mass of 127 g

1 mole of water contains 6.02×10^{23} particles and has a mass of 18 g

The amount in moles of a substance can be found by using the formula:
Amount of moles in a substance $=\frac{\text { mass of substance }}{\text { relative formula mass }}$

Have a go at completing the table on the next page:

United College Sixth Form
The best in everyone"'
(R) Part of Swindon Academy \& United Learning

Substance	Mass of substance	Amount/moles	Number of particles
Helium			18.12×10^{23}
Chlorine	14.2		
Methane		4	
Sulfuric acid	4.905		

Use a periodic table to answer the next set of questions:

2) Calculate the mass of each of the following substances. Give your answers to 3 sig figs.
a) 4.00 moles of N_{2}
b) 0.100 moles of HNO_{3}
c) 0.0200 moles of $\mathrm{K}_{2} \mathrm{O}$
d) 2.50 moles of PH_{3}
e) 0.400 moles of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
f) 10.0 moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ \qquad

United College Sixth Form
The best in everyone"'
Part of Swindon Academy \& United Learning

Chemistry Skills: 6. Empirical Formula

If you measure the mass of each reactant used in a reaction, you can work out the ratio of atoms of each reactant in the product. This is known as the empirical formula. This may give you the actual chemical formula, as the actual formula may be a multiple of this. For example, hydrogen peroxide is $\mathrm{H}_{2} \mathrm{O}_{2}$ but would have the empirical formula HO .

Use the following to find an empirical formula:

1. Write down reacting masses
2. Find the amount in moles of each element
3. Find the ratio of moles of each element

Example:
A compound contains 2.232 g of ion, 1.284 g of sulfur and 1.920 g of oxygen. What is the empirical formula?

Element	Iron	Sulfur	Oxygen
mass/relative atomic mass	$2.232 / 55.8$	$1.284 / 32.1$	$1.920 / 16.0$
Amount in moles	0.040	0.040	0.120
Divide by smallest value	$0.040 / 0.040$	$0.040 / 0.040$	$0.120 / 0.040$
Ratio	1	1	3

[^0]
United College Sixth Form

The best in everyone"
Part of Swindon Academy \& United Learning

Have a go:

Work out the following empirical formulas:

1. The smell of a pineapple is caused by ethyl butanoate. A sample is known to contain only 0.180 g of carbon, 0.030 g of hydrogen and 0.080 g of oxygen. What is the empirical formula of ethyl butanoate?
2. Find the empirical formula of a compound containing 0.0578 g of titanium, 0.288 g of carbon, 0.012 g of hydrogen and 0.384 g of oxygen.
3. 300 g of a substance are analysed and found to contain only carbon, hydrogen and oxygen. The sample contains 145.9 g of carbon and 24.32 g of hydrogen. What is the empirical formula of the compound?

United College Sixth Form
The best in everyone"'
Part of Swindon Academy \& United Learning

Chemistry Skills: 7. Organic Chemistry

Organic Chemistry is the study of carbon compounds and hydrocarbons.

At GCSE, you studied different groups and their properties, alkanes, alkenes, alcohols, carboxylic acids and esters.

Have a go:

1) Propane and propene are hydrocarbons.
a) What is a hydrocarbon? \qquad
\qquad
b) Complete the table about these two molecules.

	propane	propene
displayed structure		
molecular formula		
saturated or unsaturated?		
effect on bromine water		

2) Ethene is an unsaturated hydrocarbon that can be formed by cracking alkanes such as decane $\left(\mathrm{C}_{10} \mathrm{H}_{22}\right)$.
a) What does the term unsaturated mean?
\qquad
\qquad
b) Draw the displayed structure of ethene.

[^0]: So the empirical formula is FeSO_{3}.

